Identification of Stem Leydig Cells Derived from Pig Testicular Interstitium
نویسندگان
چکیده
Stem Leydig cells (SLCs), located in the testicular interstitial compartment in the mammalian testes, are capable of differentiating to testosterone-synthesizing Leydig cells (LCs), thus providing a new strategy for treating testosterone deficiency. However, no previous reports have identified and cultured SLCs derived from the pig. The aim of the current study was to isolate, identify, and culture SLCs from pigs. Haematoxylin and eosin staining and immunochemical analysis showed that SLCs were present and that PDGFRα was mainly expressed in the pig testicular interstitium, indicating that PDGFRα was a marker for SLCs in the neonatal pig. In addition, reverse transcription-PCR results showed that SLC markers were expressed in primary isolated LCs, indicating that they were putative SLCs. The putative SLCs were subsequently cultured with a testicular fluid of piglets (pTF) medium. Clones formed after 7 days and the cells expressed PDGFRα. However, no clones grew in the absence of pTF, but the cells expressed CYP17A1, indicating that pTF could sustain the features of porcine SLCs. To summarize, we isolated porcine SLCs and identified their basic characteristics. Taken together, these results may help lay the foundation for research in the clinical application of porcine SLCs.
منابع مشابه
In search of rat stem Leydig cells: identification, isolation, and lineage-specific development.
Leydig cells (LCs) are thought to differentiate from spindle-shaped precursor cells that exhibit some aspects of differentiated function, including 3beta-hydroxysteroid dehydrogenase (3betaHSD) activity. The precursor cells ultimately derive from undifferentiated stem LCs (SLCs), which are postulated to be present in testes before the onset of precursor cell differentiation. We searched for cel...
متن کاملCellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod.
The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photope...
متن کاملSeasonal cycle of leydig cells in the Japanese Jungle Crow (Corvus macrorhynchos)
The investigation was conducted to elucidate seasonal histomorphological changes of Leydig cells in Japanese Jungle crows (Corvus macrorhynchos). All adult crows (n=12) were killed for H&E staining. Histologic data of Leydig cells regarding their locations in the interstitium, appearance and disappearance of lipoidal materials in their cytoplasm, precursor cells and fibroblasts are studied. In ...
متن کاملI-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملTestosterone levels influence mouse fetal Leydig cell progenitors through notch signaling.
Leydig cells are the steroidogenic lineage of the mammalian testis that produces testosterone, a key hormone required throughout male fetal and adult life for virilization and spermatogenesis. Both fetal and adult Leydig cells arise from a progenitor population in the testis interstitium but are thought to be lineage-independent of one another. Genetic evidence indicates that Notch signaling is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017